There's an ongoing debate over whether human emotions are universal: I, like many researchers, think that there was solid work done by Ekman back in the day that demonstrated this pretty conclusively with tribes with little Western contact, but some people seem determined to try to pretend that evidence can be made not to exist once it's been collected, if you just argue loudly enough about how you think it's wrong.
(The evidence is wrong?)
Yet my cat can look surprised, or scared, or angry, or alarmed, or content, or curious. It's fairly well established that some emotions, like the self-conscious ones of shame or pride, have highly variable, culturally-determined expressions (if they have consistent expressions at all). But when animals very different from us can still communicate emotions, it's hard to believe none of it is universal.
(The evidence is wrong? What's wrong with you people?)
-the Centaur
P.S. If you subscribe to the anthropic fallacy fallacy, please do not bother to tell me that I'm falling into the anthropic fallacy, because you're the one trapped in a fallacy - sometimes surprise is just surprise, just like a heart is still a heart when that heart is found an animal, and not a "deceptively heart-like blood pump."
Pictured: Loki, saying, "What, you expect me to do something? I'm a cat. I was busy, sleeping!"
Please send us what you've got! Just between you and me and the fencepost, if we get about 7+/-2 more submissions, we'll have enough to call it done for the year and won't need to extend the CFP, so we can get on with reviewing the papers and preparing for the workshop. So please submit!
-the Centaur
Pictured: the very nice logo for the Embodied AI Workshop, a joint effort of me, my co-organizer Claudia, and I think one of Midjourney or DALL-E. Yes, there's generative AI in there, but it took a good bit of prompting to get the core art, and lot of work in Photoshop after that to make it usable.
So! While working on The Neurodiversiverse I've been reading up a lot on neurodiversity. According to Devon Price's Unmasking Autism, autism is massively undiagnosed, and for good---well, understandable---reasons. From parents concerned about their uncommunicative children or fans of cold geniuses on Sherlock and the Big Bang Theory, our culture focuses a lot on certain stereotypes of autism---while ignoring a much larger group of people who suffer from the same underlying conditions in their brains, but who are able to "mask" their behavior to appear much more "high functioning" or even "neurotypical".
As you might imagine, spending your whole day trying to react in ways that are fundamentally unnatural to you---and trying to hide the ways that you react that are natural to you---can stress people the fuck out. But many people never get a diagnosis---either because they're from a disadvantaged group, or because they don't want to risk the stigma and potential negative consequences of a diagnosis, or because they mask too well and no-on notices how they are suffering. But if you don't understand your condition, you may employ coping strategies which may actually do more long-term harm than good.
Well, now there are a lot of online tests and self-help books and even sympathetic therapists who can help people understand themselves better. While I've always known I was a bit strange---mostly solitary, typically withdrawn at family gatherings when I was a child, or explicitly labeled as having a weird brain---I've never pursued a diagnosis of any kind---in the past, because I didn't feel I had any trouble coping to the point that I needed help, and in the present, because having a disability label attached to you can have negative social and legal consequences that I have no interest in dealing with.
BUT! The personal stories of Unmasking Autism resonated a lot with me, and I now have friends who have gone through formal adult diagnoses of autism and ADHD, as well as an undiagnosed autistic friend who clearly is autistic and has to manage her life the way a masking autistic person does, but who did not pursue a diagnosis for precisely the same reasons that many other masking autistics do not pursue it: unless your condition is very severe, it isn't clear that a formal diagnosis can actually get you help, and it can often get you a lot of hurt. But UNDERSTANDING it, that, that we can now do.
So! And I note I again use "So!" at the start of a paragraph. Is that a verbal tic? Who cares? SO ANYWAY ...
Diagnoses of autism, and other neurodivergences! The neurodivergence I identify most with is Social Anxiety Disorder---in fact, this is the neurodivergence I chose for the protagonist of "Shadows of Titanium Rain", my own submission to The Neuroversiverse. But other people have suggested I have characteristics of OCD, or ADHD, or Autism, and I even went into therapy for stress and anxiety during the pandemic. So I decided to take five online tests: Social Anxiety Disorder, Autism, Anxiety, ADHD, and OCD.
The results are at the top of the blog---and I already gave away the game through the order I listed them. Normalizing all the scores from zero to a hundred, most of the tests put the boundary of "you've got the thing" at somewhere around 60-70% of the possible points you could score - let's call it at 2/3, or 66%, shall we? OCD scored the lowest - roughly 53%, which the test judged as "you've got OCD tendencies, but not OCD." ADHD was a little higher, 60%, and general Anxiety still higher, 63%. But none of these were over the "you've got it" thresholds for these tests---they just indicated a general tendency in that direction.
Things start to change with Autism: my test results for "Adult Autism" (*cough* MISNOMER) were 70%, well within the boundary of "you've very probably got it". Some of my friends are quite surprised to hear this, as they didn't see this in me at all; I guess my condition is "mild" and/or I mask very well.
But Social Anxiety Disorder? 86%, off the charts. And this wasn't a surprise: not only do I have a huge raft of coping mechanisms to help me deal with social situations, I also have some of the more subtle symptoms of Social Anxiety Disorder that you might not expect would be symptoms. For example, in certain socially awkward situations, I can partially stumble while walking. Most people, even those close to me, never notice that my foot briefly drags when we're walking and something socially awkward occurs - yet balance and coordination issues are a symptom of social anxiety.
Again, I've not pursued a formal diagnosis, and I don't plan to. But understanding these things about myself helps me understand why I've built a mass of coping mechanisms and masking strategies in my life---and can help me start to construct a healthier way to cope with the world within which I live.
If you feel alienated by your world, perhaps that's something you could try too.
Still at the Conference on Robot Learning. LOTS of robot dogs were about, lots of diffusion model and transformer work, and lots of language model planning. More later, gotta crash.
So, I'm proud to announce my next venture: Logical Robotics, a robot intelligence firm focused on making learning robots work better for people. My research agenda is to combine the latest advances of deep learning with the rich history of classical artificial intelligence, using human-robot interaction research and my years of experience working on products and benchmarking to help robots make a positive impact.
Recent advances in large language model planning, combined with deep learning of robotic skills, have enabled almost magical developments in explainable artificial intelligence, where it is now possible to ask robots to do things in plain language and for the robots to write their own programs to accomplish those goals, building on deep learned skills but reporting results back in plain language. But applying these technologies to real problems will require a deep understanding of both robot performance benchmarks to refine those skills and human psychological studies to evaluate how these systems benefit human users, particularly in the areas of social robotics where robots work in crowds of people.
Logical Robotics will begin accepting new clients in May, after my obligations to my previous employer have come to a close (and I have taken a break after 17 years of work at the Search Engine That Starts With a G). In the meantime, I am available to answer general questions about what we'll be doing; if you're interested, please feel free to drop me a line at via centaur at logicalrobotics.com or take a look at our website.
It's been a difficult few weeks due to "the Kerfluffle" which I hope to blog about shortly (those on my LinkedIn have seen it already) but equally as much from a Stanford extension class I was taking on Deep Reinforcement Learning (XCS234 - speaking as an expert in this area seeking to keep my skills sharp, I can highly recommend it: I definitely learned some things, and according to the graphs, so did my programs).
Finally, that's over, and I have a moment to breathe.
And maybe start blogging again.
-the Centaur
Pictured: A mocha from Red Rock Cafe, excellent as always, and a learning curve from one of my programs from class (details suppressed since we're not supposed to share the assignments).
... the block editor of Wordpress seems to be making my old non-block-editor posts turn into solid walls of text. See the post "Pascal's Wager and Purchasing Parsley":
Yeah, it's not supposed to be looking like that. Gotta track those down and fix them.
In other news, my Half-Cheetah policy is successfully training to "expected" levels of performance. Yay! I guess that means my code for the assignment is ... sorta correct? Time to clean it up and submit it.
What happens when deep learning hits the real world? Find out at the Embodied AI Workshop this Sunday, June 20th! We’ll have 8 speakers, 3 live Q&A sessions with questions on Slack, and 10 embodied AI challenges. Our speakers will include:
Motivation for Embodied AI Research
Hyowon Gweon, Stanford
Embodied Navigation
Peter Anderson, Google
Aleksandra Faust, Google
Robotics
Anca Dragan, UC Berkeley
Chelsea Finn, Stanford / Google
Akshara Rai, Facebook AI Research
Sim-2-Real Transfer
Sanja Fidler, University of Toronto, NVIDIA Konstantinos Bousmalis, Google
... came up as my wife and I were discussing the "creative hangers-on form" of Stigler's Law. The original Stigler's Law, discovered by Roger Merton and popularized by Stephen Stigler, is the idea that in science, no discovery is named after its original discoverer.
In creative circles, it comes up when someone who had little or nothing to do with a creative process takes credit for it. A few of my wife's friends were like this, dropping by to visit her while she was in the middle of a creative project, describing out loud what she was doing, then claiming, "I told her to do that."
In the words of Finn from The Rise of Skywalker: "You did not!"
In computing circles, the old joke referred to the Java programming language. I've heard several variants, but the distilled version is "He thinks he invented Java because he was in the room when someone made coffee." Apparently this is a good description of how Java itself was named, down to at least one person claiming they came up with the name Java and others disputing that, even suggesting that they opposed it, claiming instead that someone else in the room was responsible - while that person in turn rejected the idea, noting only that there was some coffee in the room from Peet's.
Hail, fellow adventurers: to prove I do something more than just draw and write, I'd like to send out a reminder of the Second Embodied AI Workshop at the CVPR 2021 computer vision conference. In the last ten years, artificial intelligence has made great advances in recognizing objects, understanding the basics of speech and language, and recommending things to people. But interacting with the real world presents harder problems: noisy sensors, unreliable actuators, incomplete models of our robots, building good simulators, learning over sequences of decisions, transferring what we've learned in simulation to real robots, or learning on the robots themselves.
The Embodied AI Workshop brings together many researchers and organizations interested in these problems, and also hosts nine challenges which test point, object, interactive and social navigation, as well as object manipulation, vision, language, auditory perception, mapping, and more. These challenges enable researchers to test their approaches on standardized benchmarks, so the community can more easily compare what we're doing. I'm most involved as an advisor to the Stanford / Google iGibson Interactive / Social Navigation Challenge, which forces robots to maneuver around people and clutter to solve navigation problems. You can read more about the iGibson Challenge at their website or on the Google AI Blog.
Most importantly, the Embodied AI Workshop has a call for papers, with a deadline of TODAY.
Call for Papers
We invite high-quality 2-page extended abstracts in relevant areas, such as:
Simulation Environments
Visual Navigation
Rearrangement
Embodied Question Answering
Simulation-to-Real Transfer
Embodied Vision & Language
Accepted papers will be presented as posters. These papers will be made publicly available in a non-archival format, allowing future submission to archival journals or conferences.
Submission
The submission deadline is May 14th (Anywhere on Earth). Papers should be no longer than 2 pages (excluding references) and styled in the CVPR format. Paper submissions are now open.
I assume anyone submitting to this already has their paper well underway, but this is your reminder to git'r done.
Christianity is a tall ask for many skeptically-minded people, especially if you come from the South, where a lot of folks express Christianity in terms of having a close personal relationship with a person claimed to be invisible, intangible and yet omnipresent, despite having been dead for 2000 years.
On the other hand, I grew up with a fair number of Christians who seem to have no skeptical bones at all, even at the slightest and most explainable of miracles, like my relative who went on a pilgrimage to the Virgin Mary apparitions at Conyers and came back "with their silver rosary having turned to gold."
Or, perhaps - not to be a Doubting Thomas - it was always of a yellowish hue.
Being a Christian isn't just a belief, it's a commitment. Being a Christian is hard, and we're not supposed to throw up stumbling blocks for other believers. So, when I encounter stories like these, which don't sound credible to me and which I don't need to support my faith, I often find myself biting my tongue.
But despite these stories not sounding credible, I do nevertheless admit that they're technically possible. In the words of one comedian, "The Virgin Mary has got the budget for it," and in a world where every observed particle event contains irreducible randomness, God has left Himself the room He needs.
But there's a long tradition in skeptical thought to discount rare events like alleged miracles, rooted in Enlightenment philosopher David Hume's essay "Of Miracles". I almost wrote "scientific thought", but this idea is not at all scientific - it's actually an injection of one of philosophy's worst sins into science.
Philosophy! Who needs it? Well, as Ayn Rand once said: everyone. Philosophy asks the basic questions What is there? (ontology), How do we know it? (epistemology), and What should we do? (ethics). The best philosophy illuminates possibilities for thought and persuasively argues for action.
But philosophy, carving its way through the space of possible ideas, must necessarily operate through arguments, principally verbal arguments which can never conclusively convince. To get traction, we must move beyond argument to repeatable reasoning - mathematics - backed up by real-world evidence.
And that's precisely what was happening right as Hume was working on his essay "Of Miracles" in the 1740's: the laws of probability and chance were being worked out by Hume's contemporaries, some of whom he corresponded with, but he couldn't wait - or couldn't be bothered to learn - their real findings.
I'm not trying to be rude to Hume here, but making a specific point: Hume wrote about evidence, and people claim his arguments are based in rationality - but Hume's arguments are only qualitative, and the quantitative mathematics of probability being developed don't support his idea.
But they can reproduce his idea, and the ideas of the credible believer, in a much sounder framework.
In all fairness, it's best not to be too harsh with Hume, who wrote "Of Miracles" almost twenty years before Reverend Thomas Bayes' "An Essay toward solving a Problem in the Doctrine of Chances," the work which gave us Bayes' Theorem, which became the foundation of modern probability theory.
If the ground is wet, how likely is it that it rained? Intuitively, this depends on how likely it is that the rain would wet the ground, and how likely it is to rain in the first place, discounted by the chance the ground would be wet on its own, say from a sprinkler system.
In Greenville, South Carolina, it rains a lot, wetting the ground, which stays wet because it's humid, and sprinklers don't run all the time, so a wet lawn is a good sign of rain. Ask that question in Death Valley, with rare rain, dry air - and you're watering a lawn? Seriously? - and that calculus changes considerably.
Bayes' Theorem formalizes this intuition. It tells us the probability of an event given the evidence is determined by the likelihood of the evidence given the event, times the probability of the event, divided by the probability of the evidence happening all by its lonesome.
Since Bayes's time, probabilistic reasoning has been considerably refined. In the book Probability Theory: The Logic of Science, E. T. Jaynes, a twentieth-century physicist, shows probabilistic reasoning can explain cognitive "errors," political controversies, skeptical disbelief and credulous believers.
Jaynes's key idea is that for things like commonsense reasoning, political beliefs, and even interpreting miracles, we aren't combining evidence we've collected ourselves in a neat Bayesian framework: we're combining claims provided to us by others - and must now rate the trustworthiness of the claimer.
In our rosary case, the claimer drove down to Georgia to hear a woman speak at a farmhouse. I don't mean to throw up a stumbling block to something that's building up someone else's faith, but when the Bible speaks of a sign not being given to this generation, I feel like its speaking to us today.
But, whether you see the witness as credible or not, Jaynes points out we also weigh alternative explanations. This doesn't affect judging whether a wet lawn means we should bring an umbrella, but when judging a silver rosary turning to gold, there are so many alternatives: lies, delusions, mistakes.
Jaynes shows, with simple math, that when we're judging a claim of a rare event with many alternative explanations, our trust in the claimer that dominates the change in our probabilistic beliefs. If we trust the claimer, we're likely to believe the claim; if we distrust the claimer, we're likely to mistrust the claim.
What's worse, there's a feedback loop between the trust and belief: if we trust someone, and they claim something we come to believe is likely, our trust in them is reinforced; if we distrust someone, and they claim something we come to believe is not likely, our distrust of them is reinforced too.
It shouldn't take a scientist or a mathematician to realize that this pattern is a pathology. Regardless of what we choose to believe, the actual true state of the world is a matter of natural fact. It did or did not rain, regardless of whether the ground is wet; the rosary did or did not change, whether it looks gold.
Ideally, whether you believe in the claimer - your opinions about people - shouldn't affect what you believe about reality - the facts about the world. But of course, it does. This is the real problem with rare events, much less miracles: they're resistant to experiment, which is our normal way out of this dilemma.
Many skeptics argue we should completely exclude the possibility of the supernatural. That's not science, it's just atheism in a trench coat trying to sell you a bad idea. What is scientific, in the words of Newton, is excluding from our scientific hypotheses any causes not necessary or sufficient to explain phenomena.
A one-time event, such as my alleged phone call to my insurance agent today to talk about a policy for my new car, is strictly speaking not a subject for scientific explanation. To analyze the event, it must be in a class of phenomena open to experiments, such as cell phone calls made by me, or some such.
Otherwise, it's just a data point. An anecdote, an outlier. If you disbelieve me - if you check my cell phone records and argue it didn't happen - scientifically, that means nothing. Maybe I used someone else's phone because mine was out of charge. Maybe I misremembered a report of a very real event.
Your beliefs don't matter. I'll still get my insurance card in a couple of weeks.
So-called "supernatural" events, such as the alleged rosary transmutation, fall into this category. You can't experiment on them to resolve your personal bias, so you have to fall back on your trust for the claimer. But that trust is, in a sense, a personal judgment, not a scientific one.
Don't get me wrong: it's perfectly legitimate to exclude "supernatural" events from your scientific theories - I do, for example. We have to: following Newton, for science to work, we must first provide as few causes as possible, with as many far-reaching effects as possible, until experiment says otherwise.
But excluding rare events from our scientific view of the world forecloses the ability of observation to revise our theories. And excluding supernatural events from our broader view of the world is not a requirement of science, but a personal choice - a deliberate choice not to believe.
That may be right. That may be wrong. What happens, happens, and doesn't happen any other way. Whether that includes the possibility of rare events is a matter of natural fact, not personal choice; whether that includes the possibility of miracles is something you have to take on faith.
-the Centaur
Pictured: Allegedly, Thomas Bayes, though many have little faith in the claimants who say this is him.
If you've ever gone to a funeral, watched a televangelist, or been buttonholed by a street preacher, you've probably heard Christianity is all about saving one's immortal soul - by believing in Jesus, accepting the Bible's true teaching on a social taboo, or going to the preacher's church of choice.
(Only the first of these actually works, by the way).
But what the heck is a soul? Most religious people seem convinced that we've got one, some ineffable spiritual thing that isn't destroyed when you die but lives on in the afterlife. Many scientifically minded people have trouble believing in spirits and want to wash their hands of this whole soul idea.
Strangely enough, modern Christian theology doesn't rely too much on the idea of the soul. God exists, of course, and Jesus died for our sins, sending the Holy Spirit to aid us; as for what to do with that information, theology focuses less on what we are and more on what we should believe and do.
If you really dig into it, Christian theology gets almost existential, focusing on us as living beings, present here on the Earth, making decisions and taking consequences. Surprisingly, when we die, our souls don't go to heaven: instead, you're just dead, waiting for the Resurrection and the Final Judgement.
(About that, be not afraid: Jesus, Prince of Peace, is the Judge at the Final Judgment).
This model of Christianity doesn't exclude the idea of the soul, but it isn't really needed: When we die, our decision making stops, defining our relationship to God, which is why it's important to get it right in this life; when it's time for the Resurrection, God has the knowledge and budget to put us back together.
That's right: according to the standard interpretation of the Bible as recorded in the Nicene creed, we're waiting in joyful hope for a bodily resurrection, not souls transported to a purely spiritual Heaven. So if there's no need for a soul in this picture, is there any room for it? What is the idea of the soul good for?
Well, quite a lot, as it turns out.
The theology I'm describing should be familiar to many Episcopals, but it's more properly Catholic, and more specifically, "Thomistic", teachings based on the writings of Saint Thomas Aquinas, a thirteenth-century friar who was recognized - both now and then - as one of the greatest Christian philosophers.
Aquinas was a brilliant man who attempted to reconcile Aristotle's philosophy with Church doctrine. The synthesis he produced was penetratingly brilliant, surprisingly deep, and, at least in part, is documented in books which are packed in boxes in my garage. So, at best, I'm going to riff on Thomas here.
Ultimately, that's for the best. Aquinas's writings predate the scientific revolution, using a scholastic style of argument which by its nature cannot be conclusive, and built on a foundation of topics about the world and human will which have been superseded by scientific findings on physics and psychology.
But the early date of Aquinas's writings affects his theology as well. For example (riffing as best I can without the reference book I want), Aquinas was convinced that the rational human soul necessarily had to be immaterial because it could represent abstract ideas, which are not physical objects.
But now we're good at representing abstract ideas in physical objects. In fact, the history of the past century and a half of mathematics, logic, computation and AI can be viewed as abstracting human thought processes and making them reliable enough to implement in physical machines.
Look, guys - I am not, for one minute, going to get cocky about how much we've actually cracked of the human intellect, much less the soul. Some areas, like cognitive skills acquisition, we've done quite well at; others, like consciousness, are yielding to insights; others, like emotion, are dauntingly intractable.
But it's no longer a logical necessity to posit an intangible basis for the soul, even if practically it turns out to be true. But digging even deeper into Aquinas's notion of a rational soul helps us understand what it is - and why the decisions we make in this life are so important, and even the importance of grace.
The idea of a "form" in Thomistic philosophy doesn't mean shape: riffing again, it means function. The form of a hammer is not its head and handle, but that it can hammer. This is very similar to the modern notion of functionalism in artificial intelligence - the idea that minds are defined by their computations.
Aquinas believed human beings were distinguished from animals by their rational souls, which were a combination of intellect and will. "Intellect" in this context might be described in artificial intelligence terms as supporting a generative knowledge level: the ability to represent essentially arbitrary concepts.
Will, in contrast, is selecting an ideal model of yourself and attempting to guide your actions to follow it. This is a more sophisticated form of decision making than typically used in artificial intelligence; one might describe it as a reinforcement learning agent guided by a self-generated normative model.
What this means, in practice, is that the idea of believing in Jesus and choosing to follow Him isn't simply a good idea: it corresponds directly to the basic functions of the rational soul - intellect, forming an idea of Jesus as a (divinely) good role model, and attempting to follow in His footsteps in our choice of actions.
But the idea of the rational soul being the form of the body isn't just its instantaneous function at one point in time. God exists out of time - and all our thoughts and choices throughout our lives are visible to Him. Our souls are the sum of all of these - making the soul the form of the body over our entire lives.
This means the history of our choices live in God's memory, whether it's helping someone across the street, failing to forgive an irritating relative, going to confession, or taking communion. Even sacraments like baptism that supposedly "leave an indelible spiritual character on the soul" fit in this model.
This model puts the following Jesus, trying to do good and avoid evil, and partaking in sacraments in perspective. God knows what we sincerely believe in our hearts, whether we live up to it or not, and is willing to cut us slack through the mechanisms of worship and grace that add to our permanent record.
Whether souls have a spiritual nature or not - whether they come from the Guf, are joined to our bodies in life, and hang out in Hades after death awaiting reunion at the Resurrection, or whether they simply don't - their character is affected by what we believe, what we do, and how we worship here and now.
And that's why it's important to follow Jesus on this Earth, no matter what happens in the afterlife.
Alan Turing, rendered over my own roughs using several layers of tracing paper. I started with the below rough, in which I tried to pay careful attention to the layout of the face - note the use of the 'third eye' for spacing and curved contour lines - and the relationship of the body, the shoulders and so on.
I then corrected that into the following drawing, trying to correct the position and angles of the eyes and mouth - since I knew from previous drawings that I tended to straighten things that were angled, I looked for those flaws and attempted to correct them. (Still screwed up the hair and some proportions).
This was close enough for me to get started on the rendering. In the end, I like how it came out, even though I flattened the curves of the hair and slightly squeezed the face and pointed the eyes slightly wrong, as you can see if you compare it to the following image from this New Yorker article:
-the Centaur
Lent is when Christians choose to give things up or to take things on to reflect upon the death of Jesus. For Lent, I took on this self-referential series about Lent, arguing Christianity is following Jesus, and that following role models are better than following rules because all sets of rules are ultimately incompete.
But how can we choose to follow Jesus? To many Christians, the answer is simple: "free will." At one Passion play (where I played Jesus, thanks to my long hair), the author put it this way: "You are always choose, because no-one can take your will away. You know that, don't you?"
Christians are highly attached to the idea of free will. However, I know a fair number of atheists and agnostics who seem attached to the idea of free will being a myth. I always find this bit of pseudoscence a bit surprising coming from scientifically minded folk, so it's worth asking the question.
Do we have free will, or not?
Well, it depends on what kind of free will we're talking about. Philosopher Daniel Dennett argues at book length that there are many definitions of "free will", only some varieties of which are worth having. I'm not going to use Dennett's breakdown of free will; I'll use mine, based on discussions with people who care.
The first kind of "free will" is undetermined will: the idea that "I", as consciousness or spirit, can make things happen, outside the control of physical law. Well, fine, if you want to believe that: the science of quantum mechanics allows that, since all observable events have unresolvable randomness.
But the science of quantum mechanics also suggests we could never prove that idea scientifically. To see why, look at entanglement: particles that are observed here are connected to particles over there. Say, if momentum is conserved, and two particles fly apart, if one goes left, the other must go right.
But each observed event is random. You can't predict one from the other; you can only extract it from the record by observing both particles and comparing the results. So if your soul is directing your body's choices, we could only tell by recording all the particles of your body and soul and comparing them.
Good luck with that.
The second kind of "free will" is instantaneous will: the idea that "I", at any instant of time, could have chosen to do something differently. It's unlikely we have this kind of free will. First, according to Einstein, simultaneity has no meaning for physically separated events - like the two hemispheres of your brain.
But, more importantly, the idea of an instant is just that - an idea. Humans are extended over time and space; the brain is fourteen hundred cubic centimeters of goo, making decisions over timescales ranging from a millisecond (a neuron fires) to a second and a half (something novel enters consciousness.)
But, even if you accept that we are physically and temporally extended beings, you may still cling to - or reject - an idea of free will: sovereign will, the idea that our decisions, while happening in our brains and bodies, are nevertheless our own. The evidence is fairly good that we have this kind of free will.
Our brains are physically isolated by our skulls and the blood-brain barrier. While we have reflexes, human decision making happens in the neocortex, which is largely decoupled from direct external responses. Even techniques like persuasion and hypnosis at best have weak, indirect effects.
But breaking our decision-making process down this way sometimes drives people away. It makes religious people cling to the hope of undetermined will; it makes scientific people erroneously think that we don't have free will at all, because our actions are not "ours", but are made by physical processes.
But arguing that "because my decisions are made by physical processes, therefore my decisions are not actually mine" requires the delicate dance of identifying yourself with those processes before the comma, then rejecting them afterwards. Either those decision making processes are part of you, or they are not.
If they're not, please go join the religious folks over in the circle marked "undetermined will."
If they are, then arguing that your decisions are not yours because they're made by ... um, the decision making part of you ... is a muddle of contradictions: a mix of equivocation (changing the meaning of terms) and a category error (mistaking your decision making as something separate from yourself).
But people committed to the non-existence of free will sometimes double down, claiming that even if we accept those decision making processes as part of us, our decisions are somehow not "ours" or not "free" because the outcome of our decision making process is still determined by physical laws.
To someone working on Markov decision processes - decision machines - this seems barely coherent.
The foundation of this idea is sometimes called Laplace's demon - the idea that a creature with perfect knowledge of all physical laws and particles and forces would be able to predict the entire history of the universe - and your decisions, so therefore, they're not your decisions, just the outcome of laws.
Too bad this is impossible. Not practically impossible - literally, mathematically impossible.
To see why, we need to understand the Halting Problem - the seemingly simple question of whether we can build a program to tell if any given computer program will halt given any particular input. As basic as this question sounds, Alan Turing proved in the 1930's that this is mathematically impossible.
The reason is simple: if you could build an analysis program which could solve this problem, you could feed itself to itself - wrapped in a loop that went forever if the original analysis program halts, and halts if it ran forever. No matter what answer it produces, it leads to a contradiction. The program won't work.
This idea seems abstract, but its implications are deep. It applies to not just computer programs, but to a broad class of physical systems in a broad class of universes. And it has corollaries, the most important being: you cannot predict what any arbitrary given algorithm will do without letting the algorithm do it.
If you could, you could use it to predict whether a program would halt, and therefore, you could solve the Halting Problem. That's why Laplace's Demon, as nice a thought experiment as it is, is slain by Turing's Machine. To predict what you would actually do, part of the demon would have to be identical to you.
Nothing else in the universe - nothing else in a broad class of universes - can predict your decisions. Your decisions are made in your own head, not anyone else's, and even though they may be determined by physical processes, the physical processes that determine them are you. Only you can do you.
Yesterday I claimed that Christianity was following Jesus - looking at him as a role model for thinking, judging, and doing, stepping away from rules and towards principles, choosing good outcomes over bad ones and treating others like we wanted to be treated, and ultimately emulating what Jesus would do.
But it's an entirely fair question to ask, why do we need a role model to follow? Why not have a set of rules that guide our behavior, or develop good principles to live by? Well, it turns out it's impossible - not hard, but literally mathematically impossible - to have perfect rules, and principles do not guide actions. So a role model is the best tool we have to help us build the cognitive skill of doing the right thing.
Let's back up a bit. I want to talk about what rules are, and how they differ from principles and models.
In the jargon of my field, artificial intelligence, rules are if-then statements: if this, then do that. They map a range of propositions to a domain of outcomes, which might be actions, new propositions, or edits to our thoughts. There's a lot of evidence that the lower levels of operation of our minds is rule-like.
Principles, in contrast, are descriptions of situations. They don't prescribe what to do; they evaluate what has been done. The venerable artificial intelligence technique of generate-and-test - throw stuff on the wall to see what sticks - depends on "principles" to evaluate whether the outcomes are good.
Models are neither if-then rules nor principles. Models predict the evolution of a situation. Every time you play a computer game, a model predicts how the world will react to your actions. Every time you think to yourself, "I know what my friend would say in response to this", you're using a model.
Rules, of a sort, may underly our thinking, and some of our most important moral precepts are encoded in rules, like the Ten Commandments. But rules are fundamentally limited. No matter how attached you are to any given set of rules, eventually, those rules can fail you, and you can't know when.
The iron laws behind these fatal flaws are Gödel's incompleteness theorems. Back in the 1930's, Kurt Gödel showed any set of rules sophisticated enough to handle basic math would either fail to find things that were true, or would make mistakes - and, worse, could never prove that they were consistent.
Like so many seemingly abstract mathematical concepts, this has practical real-world implications. If you're dealing with anything at all complicated, and try to solve your problems with a set of rules, either those rules will fail to find the right answers, or will give the wrong answers, and you can't tell which.
That's why principles are better than rules: they make no pretensions of being a complete set of if-then rules that can handle all of arithmetic and their own job besides. They evaluate propositions, rather than generating them, they're not vulnerable to the incompleteness result in the same way.
How does this affect the moral teachings of religion? Well, think of it this way: God gave us the Ten Commandments (and much more) in the Old Testament, but these if-then rules needed to be elaborated and refined into a complete system. This was a cottage industry by the time Jesus came on the scene.
Breaking with the rule-based tradition, Jesus gave us principles, such as "love thy neighbor as thyself" and "forgive as you wish to be forgiven" which can be used to evaluate our actions. Sometimes, some thought is required to apply them, as in the case of "Is it lawful to do good or evil on the Sabbath?"
This is where principles fail: they don't generate actions, they merely evaluate them. Some other process needs to generate those actions. It could be a formal set of rules, but then we're back at square Gödel. It could be a random number generator, but an infinite set of monkeys will take forever to cross the street.
This is why Jesus's function as a role model - and the stories about Him in the Bible - are so important to Christianity. Humans generate mental models of other humans all the time. Once you've seen enough examples of someone's behavior, you can predict what they will do, and act and react accordingly.
The stories the Bible tells about Jesus facing moral questions, ethical challenges, physical suffering, and even temptation help us build a model of what Jesus would do. A good model of Jesus is more powerful than any rule and more useful than any principle: it is generative, easy to follow, and always applicable.
Even if you're not a Christian, this model of ethics can help you. No set of rules can be complete and consistent, or even fully checkable: rules lawyering is a dead end. Ethical growth requires moving beyond easy rules to broader principles which can be used to evaluate the outcomes of your choices.
But principles are not a guide to action. That's where role models come in: in a kind of imitation-based learning, they can help guide us by example until we've developed the cognitive skills to make good decisions automatically. Finding role models that you trust can help you grow, and not just morally.
Good role models can help you decide what to do in any situation. Not every question is relevant to the situations Jesus faced in ancient Galilee! For example, when faced with a conundrum, I sometimes ask three questions: "What would Jesus do? What would Richard Feynman do? What would Ayn Rand do?"
These role models seem far apart - Ayn Rand, in particular, tried to put herself on the opposite pole from Jesus. But each brings unique mental thought processes to the table - "Is this doing good or evil?" "You are the easiest person for yourself to fool" and "You cannot fake reality in any way whatsoever."
Jesus helps me focus on what choices are right. Feynman helps me challenge my assumptions and provides methods to test them. Rand is benevolent, but demands that we be honest about reality. If two or three of these role models agree on a course of action, it's probably a good choice.
Jesus was a real person in a distant part of history. We can only reach an understanding of who Jesus is and what He would do by reading the primary source materials about him - the Bible - and by analyses that help put these stories in context, like religious teachings, church tradition, and the use of reason.
But that can help us ask what Jesus would do. Learning the rules are important, and graduating beyond them to understand principles is even more important. But at the end of the day, we want to do the right thing, by following the lead of the man who asks, "Love thy neighbor as thyself."
"Robots in Montreal," eh? Sounds like the title of a Steven Moffat Doctor Who episode. But it's really ICRA 2019 - the IEEE Conference on Robotics and Automation, and, yes, there are quite a few robots!
My team presented our work on evolutionary learning of rewards for deep reinforcement learning, AutoRL, on Monday. In an hour or so, I'll be giving a keynote on "Systematizing Robot Navigation with AutoRL":
Keynote: Dr. Anthony Francis Systematizing Robot Navigation with AutoRL: Evolving Better Policies with Better Evaluation
Abstract: Rigorous scientific evaluation of robot control methods helps the field progress towards better solutions, but deploying methods on robots requires its own kind of rigor. A systematic approach to deployment can do more than just make robots safer, more reliable, and more debuggable; with appropriate machine learning support, it can also improve robot control algorithms themselves. In this talk, we describe our evolutionary reward learning framework AutoRL and our evaluation framework for navigation tasks, and show how improving evaluation of navigation systems can measurably improve the performance of both our evolutionary learner and the navigation policies that it produces. We hope that this starts a conversation about how robotic deployment and scientific advancement can become better mutually reinforcing partners.
Bio: Dr. Anthony G. Francis, Jr. is a Senior Software Engineer at Google Brain Robotics specializing in reinforcement learning for robot navigation. Previously, he worked on emotional long-term memory for robot pets at Georgia Tech's PEPE robot pet project, on models of human memory for information retrieval at Enkia Corporation, and on large-scale metadata search and 3D object visualization at Google. He earned his B.S. (1991), M.S. (1996) and Ph.D. (2000) in Computer Science from Georgia Tech, along with a Certificate in Cognitive Science (1999). He and his colleagues won the ICRA 2018 Best Paper Award for Service Robotics for their paper "PRM-RL: Long-range Robotic Navigation Tasks by Combining Reinforcement Learning and Sampling-based Planning". He's the author of over a dozen peer-reviewed publications and is an inventor on over a half-dozen patents. He's published over a dozen short stories and four novels, including the EPIC eBook Award-winning Frost Moon; his popular writing on robotics includes articles in the books Star Trek Psychology and Westworld Psychology. as well as a Google AI blog article titled Maybe your computer just needs a hug. He lives in San Jose with his wife and cats, but his heart will always belong in Atlanta. You can find out more about his writing at his website.
Hoisted from a recent email exchange with my friend Gordon Shippey:
Re: Whassap?Gordon:
Sounds like a plan.
(That was an actual GMail suggested response. Grumble-grumble AI takeover.)
Anthony:
I<tab-complete> welcome our new robot overlords.
I am constantly amazed by the new autocomplete. While, anecdotally, autocorrect of spell checking is getting worse and worse (I blame the nearly-universal phenomenon of U-shaped development, where a system trying to learn new generalizations gets worse before it gets better), I have written near-complete emails to friends and colleagues with Gmail's suggested responses, and when writing texts to my wife, it knows our shorthand!
One way of doing this back in the day were Markov chain text models, where we learn predictions of what patterns are likely to follow each other; so if I write "love you too boo boo" to my wife enough times, it can predict "boo boo" will follow "love you too" and provide it as a completion. More modern systems use recurrent neural networks to learn richer sets of features with stateful information carried down the chain, enabling modern systems to capture subtler relationships and get better results, as described in the great article "The Unreasonable Effectiveness of Recurrent Neural Networks".
-the<tab-complete> Centaur
So, this happened! Our team's paper on "PRM-RL" - a way to teach robots to navigate their worlds which combines human-designed algorithms that use roadmaps with deep-learned algorithms to control the robot itself - won a best paper award at the ICRA robotics conference!
I talked a little bit about how PRM-RL works in the post "Learning to Drive ... by Learning Where You Can Drive", so I won't go over the whole spiel here - but the basic idea is that we've gotten good at teaching robots to control themselves using a technique called deep reinforcement learning (the RL in PRM-RL) that trains them in simulation, but it's hard to extend this approach to long-range navigation problems in the real world; we overcome this barrier by using a more traditional robotic approach, probabilistic roadmaps (the PRM in PRM-RL), which build maps of where the robot can drive using point to point connections; we combine these maps with the robot simulator and, boom, we have a map of where the robot thinks it can successfully drive.
We were cited not just for this technique, but for testing it extensively in simulation and on two different kinds of robots. I want to thank everyone on the team - especially Sandra Faust for her background in PRMs and for taking point on the idea (and doing all the quadrotor work with Lydia Tapia), for Oscar Ramirez and Marek Fiser for their work on our reinforcement learning framework and simulator, for Kenneth Oslund for his heroic last-minute push to collect the indoor robot navigation data, and to our manager James for his guidance, contributions to the paper and support of our navigation work.
Woohoo! Thanks again everyone!
-the Centaur